The Viscous Catenary

نویسنده

  • L. Mahadevan
چکیده

A filament of an incompressible highly viscous fluid that is supported at its ends sags under the influence of gravity. Its instantaneous shape resembles that of a catenary, but evolves with time. At short times, the shape is dominated by bending deformations. At intermediate times, the effects of stretching become dominant everywhere except near the clamping boundaries where bending boundary layers persist. Finally, the filament breaks off in finite time via strain localization and pinch-off. 1. Introduction In 1690, Jacob Bernoulli issued the following challenge: determine the shape of a heavy filament or chain hanging between two points on the same horizontal line. Leibniz, Huygens and Johann Bernoulli independently discovered the equation for the shape of the catenary (derived from the Latin for chain), providing one of the first exact solutions of a nonlinear problem in continuum mechanics. Here we consider the fluid analogue of a catenary, shown in figure 1(a–f). When a thin filament of an incompressible highly viscous fluid forms a bridge across the gap between two solid vertical walls, it will sag under the influence of gravity. After a very short initial transient when it falls quickly, it slows down in response to the resistance to extension. During this process, it starts to thin, and thus speeds up, albeit inhomogeneously, eventually leading to necking and pinch-off, even in the absence of interfacial tension. The richness of this problem is paradigmatic of the free-boundary problems that are common in materials processing in such instances as filament spinning, glass manufacture etc. In addition the problem illustrates an application, to geometrically nonlinear problems, of the classical analogy between the equations of equilibrium for a linear elastic (Hookean) solid and the equations of motion for the creeping flow of a (Newtonian) fluid, due to Stokes (1845) and Rayleigh (1922).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Catenary Riser-Seabed Interaction Due to Caspian Sea Environmental Conditions

This paper investigates the integrated riser/vessel system which is subjected to random waves. Riser pipelines are the main components of the oil and gas offshore platforms. Whereas Iran country has been located on the fringes of Caspian Sea deep water, therefore study and research in this area is increasingly essential. The fluctuation of floating production causes the severe response and grea...

متن کامل

On quasi-catenary modules

We call a module M , quasi-catenary if for each pair of quasi-prime submodules K and L of M with K L all saturated chains of quasi-prime submodules of M from K to L have a common finite length. We show that any homomorphic image of a quasi-catenary module is quasi-catenary. We prove that if M   is a module with following properties: (i) Every quasi-prime submodule of M has finite quasi-height;...

متن کامل

An Influence of Trench Formation on Steel Catenary Risers Based on a Hysteretic Nonlinear Seabed Model

A steel catenary riser (SCR) attached to a floating platform at its upper end encounters fluctuations in and near its touchdown zone (TDZ), which causes the interaction with the seabed. Subsea surveys and the analysis of SCR’s indicated that the greatest stress and highest damage occurred near the touchdown point (TDP), where the SCR first touches the seabed. Nowadays, the linear seabed spring ...

متن کامل

Fall and rise of a viscoelastic filament

When a viscoelastic fluid blob is stretched out into a thin horizontal filament, it sags and falls gradually under its own weight, forming a catenary-like structure that evolves dynamically. If the ends are brought together rapidly after stretching, the falling filament tends to straighten by rising. These two effects are strongly influenced by the elasticity of the fluid and yield qualitativel...

متن کامل

Modeling of Pantograph-Catenary dynamic stability

The purpose of this paper is to describe the possibilities of studying the influence of forces external variables on the stability of motion of dynamical systems modeled by systems of differential equations with periodic coefficients of stability. The method is applied to analyze the influence of external harmonic forces on the stability of motion of the pantograph couple contact wire electric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003